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ABSTRACT

This study is concerned with the theoretical and quantitative experi-

mental determination of critical loads which separate stable from unstable

states of equilibrium of a mechanical system subjected to the action of an

impinging fluid jet. It was found that the type of loss of stability is

determined by the properties of the surface upon which the jet impinges.

For a smooth surface, stability was lost by divergence (static buckling),

whereas for a surface with a screen of certain mesh size, stability was

lost by flutter (oscillations with increasing amplitudes). The experiment-

al results have been compared with a theoretical stability analysis of this

nonconservative system and a satisfactory correlation of numerical values

is shown to exist, particularly if the peculiar effects of damping are ac-

counted for.
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i. INTRODUCTION

Theoretical studies of stability of elastic systems subjected to non-

conservative (also termed circulatory) forces have revealed a number of in-

teresting phenomena. An account of the development in this field is given

by Herrmann in a survey article [i]*. In the majority of these studies,

however, the forces are introduced rather artificially and without any ref-

erence as to their possible physical origin. In a recent report [2], a

series of structural models embodyingthe features that are peculiar to the

behavior of such nonconservative systems is described qualitatively. It is

the aim of the present study to report quantitative results which were ob-

tained in the course of experimentation with one of the models discussed in

[2], and comparethe results with the theoretical predictions.

The mathematical model of the physical system considered here may be

called Reut's problem. It consists of a cantilever with a rigid plate at

its free end, which is normal to the axis. It is subjected to a force,

acting on the plate, which is always collinear with the undeformed axis of

the cantilever, see Fig. I. Bolotin [3] reports that this problem was

first posed by Reut in 1939 and solved by B. L. Nikolai in the sameyear.

In this context, Bolotin suggests that the force in Reut's problem may be

realized by an impinging jet of absolutely inelastic particles, since the

kinetic energy of the particles is completely absorbed upon impact. To the

authors' knowledge no attempt was ever madeto follow up these suggestions,

or to realize Reut's problem in any other way. Bolotin also sugges_that

the pressure from a jet of liquid or gas may induce such a force when the

Numbers in brackets designate References at end of paper.



inclination of the force, as the bar deforms, is neglected.

In an attempt to construct models based on these ideas, the authors

discovered that by covering the plate with screens of certain meshsizes a

problem very close to the Reut's one may be realized. The resultant force,

in this case, has an inclination which can be controlled by a suitable ar-

rangement of screens of various mesh sizes; the point of application of the

resultant force, however, always lies on the axis of the undeformed canti-

lever. Whenthis force stays normal to the end plate, the system loses

stability by divergence (attainment of another equilibrium state); the

force is conservative. On the other hand, if the force stays collinear with

the undeformed axis of the bar, the loss of stability occurs by flutter

(oscillations with increasing amplitudes)_ the force is nonconservative. By

controlling the inclination of the force, various degrees of nonconserva-

tiveness may be attained.

The experimental results are obtained using a system with two degrees

of freedom, rather than a continuous cantilever. The applied force is in-

duced by an impinging air jet. The degree of nonconservativeness is con-

trolled by employing suitable end attachments, resulting in either diver-

gent- or flutter-type motions of the system. Also, the effect of viscous

damping forces is investigated. It is found that the experimentally ob-

tained flutter-load corresponds rather closely to the theoretical predic-

tion when small dissipative forces are included; this confirms the earlier

findings that small damping forces mayhave a destabilizing effect [3-13].



2. DESCRIPTIONOFMODELANDSUPPORTINGEQUIPMENT

The model consists of two like rigid rods (Fig. 2). Onerod is elas-

tically hinged to a fixed base while the other is elastically hinged to the

first rod and free at the other end. The system is constrained to move in a

horizontal plane, being supported by long, light wires. Various rigid at-

tachments can be placed at the free end of the second rod. The attachment

consists basically of a rigid flat plate covered with a combination of

screens of various meshsizes and sandpapers of various degrees of coarse-

ness. This attachment is rigidly fixed and mountednormal to the axis of

the second rod. In the absence of any disturbance, the system is in equi-

librium when the two rods are colllnear (undisturbed configuration).

A fixed nozzle is placed along the equilibrium axis of the system,

one inch away from the attachment, and an air jet is madeto impinge upon

the attachment. The flow rate can be varied by meansof a valve. The dy-

namic pressure at the nozzle corresponding to a given flow rate can be read

from a dial gage.

It is observed that as the flow rate, and hence the force on the attach-

ment, is increased and passes a certain (critical) value, the system does not

remain in the undisturbed configuration. Stability is lost by either flut-

ter (oscillations with increasing amplitudes) or by divergence (buckling (the

attainment of another equilibrium state)), depending on the nature of the

attachment used. If the attachment is a flat plate with a smooth surface

(a flat sheet of aluminum) facing the air Jet, then the loss of stability

occurs by divergence. By contrast, flutter-type motion is observed if the

attachment is a plate with screens of certain meshsizes placed on the
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surface that faces the impinging fluid. The sequenceof photographs in Fig.

3 illustrates the flutter-type motion, while Fig. 4 depicts a buckled state

(divergence). Figure 5 and Table i present the numerical values for all the

relevant properties of the system.

The supporting equipment consists of a calibrating system which is used

to correlate the dynamic pressure, hence the flow rate, with the actual

force which acts on the system. Three square steel plates are placed hori-

zontally one above the other, and are separated and supported by sets of

steel leaf springs. The steel leaf springs connecting the two lower plates

permit displacement in only one direction, while those connecting the upper

two plates permit displacement only in the perpendicular direction. Two

stages are thus formed. The displacement of each stage is, with a high

degree of accuracy, proportional to the componentof the force which acts

along the direction of the displacement. With the aid of a pair of strain

gages attached to the steel leaf springs, and using a compensating network,

readings can be taken which are proportional to the respective displace-

ments of each stage. In this manner, strain gage readings can be related to

the magnitude of the force acting on the system.

The supporting equipment described above is used to find the direction

and the magnitude of the force on the attachment when the dynamic pressure

ot the impinging air jet at the nozzle is known. The attachment is mounted

on the top plate of the supporting stages and then subjected to the air jet

at a given angle of incidence, see Fig. 6. The magnitude and the direction

of the resultant force corresponding to a given angle of incidence and for

a given dynamic pressure are thus obtained experimentally.



3. THEORY

As was pointed out in Section I, the problem of a cantilever with a

rigid cross-plate at its free end and subjected to a force which is always

directed along the initial, undeformed axis of the cantilever, was first

posed by Reut in 1939. It is essential to note that the applied force in

Reut's problem is not attached to a material point of the system, but

rather to a line in space. In structural mechanics, boundary value problems

are commonlyposed for surface tractions which are connected to the material

points upon which they act. As a result, the difference between the dis-

placements of the material points and of the points of application of the

forces disappears.

In the present problem, the force is induced by the action of an air

jet upon the end plate. It may be assumedthat such an action is equiva-

lent to a resultant force whose point of application lies always on the axis

of the undeformed system, that is, along the direction of the flow. This

force continuously disengages from the material point on which it is in-

stantaneously acting. This force is conservative only if it stays normal to

the end plate as the system deforms. In the subsequent analysis, we will

denote this force by P and the angle by which it rotates as the system de-

forms, by _2"

Weconsider small lateral motions of the system as shown in Fig. 5.

The rigid bar, designated by I, is connected to the support by a rotational

spring of stiffness KI and carries at its other end a rotational spring of

stiffness K2 to which is attached another rigid rod, designated as II. In

addition, rods I and II are connected to two linear coil springs as shown in



Fig. 5. Since the displacement of the spring connected to bar I is not

coupled with the motion of the bar II, the stiffness KI properly accounts

for the effect of this spring. The spring connected to bar II is located at

a distance d 2 from the center of the middle joint and has stiffness K 3.

The inertial properties are represented by seven masses mo,
J

j = 1,2,...7, and seven centroidal moments of inertia I., j = 1,2,...7. The
3

mass of the end rotational spring is denoted by ml, and that of the rod I is

denoted by m 2. The central rotational spring has in effect two masses m 3

and m 4 which are attached to the rods I and II, respectively. The mass of

the rod II is m5, and m 6 is that of the collar which fits the attachment

having mass m 7.

The distance between the centers of the end and the middle rotational

springs is denoted by _I' while the mass m 7 is at a distance %2 from the

center of the middle joint. The dimensions aj, bI and cI are the distances

from the center of the end joint to masses ml, m 2 and m3, respectively,

while a2, b2 and c2 designate the respective distances of m4, m 5 and m 6 from

the center of the middle joint.

The two rotational springs were made of high tempered spring steel with

identical geometry and, therefore, they have small damping with, plausibly,

the same damping constant el" Since the attachment has a large surface area

which moves relative to the impinging air jet, an external linear damping

with constant ¢2 appears to be a reasonable representation of the corres-

ponding damping mechanism.

The magnitude of the force due to the impinging air jet is P, the

direction of which encloses an angle 0KP2 with the undeformed axis. _ is

assumed to be a constant which will be determined experimentally with the



help of the auxiliary equipment as described in Section 4. q01and _02are

the respective rotations of bars I and II from the initial straight position.

The following equations of motion are obtained by employing D'Alem-

bert's principle:

Alibi + A12_2+ BII_I + B12_2+ (CII - P_l)q01+ (C12 + P_l_)q02= 0
(1)

A21_01 + A22_02 + B21_01 + B22_o2 + (C21 + P_l)q01 + (C22 + P_2@)q02 = 0

where

2

All = (m4 + m5 + m6 + m7)Ll

2 2 2

+ mla I + m2b I + m3c I + I I + 12 + 13

AI2 = A21 = (m4a 2 + m5b 2 + m6c 2 + m7_2)% I

2 2 2
A22 = m4a _ + m5b 2 + m6c 2 + m7% 2 + 14 + 15 + 16 + 17

BII = e_ 2i + 2el

BI2 = B21 = e2Ll_ 2 - e 1

2

B22 = e2% 2 + e 1

CII = KI + K2 + K3_21

C12 = C21 = _ K2 + K3_Id2

2

C22 = K2 + K3d 2

A. Undamped System - Flutter.

Consider first the undamped case, i.e., let eI = e2 m 0.

Assuming solutions o_ the form

iwt

_1 = _1 e

iwt
_2 = _2 e '

(2)

Then B.. = 0.
zj

(3)



where i = _r_, _I and _2 are undetermined amplitudes, w is an undetermined

frequency and t is the time variable, the associated frequency equation is

4 bw2am + + c : 0, (4)

where

2

a : A IIA22 - AI2

b = 2A12C12 + AI2P_I(I+_) - AIIP_2_ - AIIC22 - A22CII + A22P_ I 45)

2 _ C22P_ ic = CIIP£2_ - P2_I_(_ I + _2 ) CI2P%I_ - CI2PL I + CIIC22 - C12

Flutter occurs if _ is complex with a negative imaginary part. The

threshold (critical) value of P, called P., is obtained by setting

b2 - 4ac = 0 (6)

and is

= 2hk - fg 4- f2 2P*I,2 f2 _ 4hj 4hj

/h2k 2 - hkfg - 4h2jm + hjg 2 + hml 2 (7)

where

= A12_I(I +if) All_2ff + A22_ I

g = 2A12C12 - AIIC22 - A22CII

2

h = ALIA22 - AI2

j : _ _I_(LI +_2 )

(8)

k = CIIL2 ff - C12%lff- CI211 - C22_I

_ C2
m = CIIC22 12

As the value of P is increased, flutter will occur when P becomes equal

to the lower value of P.. Note that P. is a function of _ through Eqs. (8).
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P, exists only when the argument of the square root in Eq. (7) is non-

negative.

B. Damped System - Flutter.

Using an assumed solution of the form (3) in Eqs. (i) results in the

following determinant which is set equal to zero for a nontrivial solution:

w2AII + CII PL 1 + iWBll

- _2A12 + C12 + P%I + iWBl2

- w2AI2 + PLI_ + C12 + i_Bl2

- _2A22 + P%2 _ + C22 + i_B22

=0

(9)

If we neglect the product of _I and ¢2 in the expansion of (9), we ob-

tain two equations by separating the real and imaginary parts. The first

equation is the same as Eq. (4). The equation resulting from the imaginary

part yields the following relation:

+ C22) + B22(CII - P_I) - BI2[P_I(I+_) + 2C12]BII(PI2_2
(10)W =

A22BII + AIIB22 - 2AI2BI2

2
Substituting w from Eq. (i0) into Eq. (4) and denoting by Pd the threshold

values of P for this case, results in

u ij2
= - _ ± _ u - 4wv , (II)

Pdl, 2

where

2hqr qg + fr
U=--+

2 s
s

+k

hr 2 gr 2
v=--+--+m

2 s
s

hq 2 fq

s

(12)

and



i0

where

q = l(3e_- 2)

r = (1 +2e)C22 + (1 +e)Cll - 2c12(1 - e)

s = (I + 2e)A22 + (I +¢)All - 2A12(I - e),

(13)

e m _1/e242 and 4 m 41 _42 . (14)

Thus the critical force depends not only on _, but also on _, essen-

tially the ratio of the damping coefficients. The critical force is the

lower of the two values of Pd and it exists only when the argument of the

square root in Eq. (II) is non-negative.

C. Divergence.

For divergence, or buckling, _ is set equal to zero in Eq. (4). The

condition is then

c = 0. (15)

Denoting the value of P at which this occurs by Pb' we have

k__ I 2
Pbl, 2 = - 2j ± _ - 4jm , (16)

where j, k and m are defined by Eqs. (8).

As are P, and Pd' Pb is also a function of _, but it is independent of

the mass distribution. Pb exists only if k 2 - 4jm _ 0.

• D. Results.

With the system parameters given, including the spring constants, which

are determined experimentally (see Section 4), Eqs. (7), (ii) and (16) must

be solved for P for each specified value of _. This repetitious task was

performed with the aid of a CDC 3400 computer in use at the Vogelback Com-

puting Center of Northwestern University.



ii

As can be seen in Fig. 5, for _ = 0, the force P is always directed

along the equilibrium line, i.e., the line defined by _I = _2 = 0. When

= I, the force is always perpendicular to the surface of the attachment.

As discussed earlier, in the former case the force is nonconservative, while

in the latter it is conservative. It turns out that with the present set-

up, experimentally realizable _ are in the range 0.23 _ _ K 0.91.

Unfortunately, mechanical failure of the joints occurred during the

advanced stage of experimental measurements and, consequently, when the

model was reassembled, the spring constants _, K 2 and K 3 changed. Thus it

became necessary to designate the previous model by system I and the re-

assembled model by system II. With due respect to the difference in system

parameters, stability curves, P vs. _, are shown in Figs. 12 and 13.



4. EXPERIMENTAL PROCEDURE AND RESULTS

A. Correlation of the Force with Air Pressure and Determination of G.

12

To find the magnitude and the direction of the force acting on the at-

tachment due to a given air flow rate, the supporting equipment described in

Section 2 is used.

The nozzle assembly is detached from the model and mounted adjacent to

the calibrating device (Fig. 6), parallel to the direction of motion of one

of the stages. The rigid attachment is separated from the model and mounted

on a special bracket on the top plate of the calibrating stages. This

bracket may be rotated so that the angle between a normal to the attachment

and the center line of the nozzle, namely, _2' may be varied. Markings are

provided for _2 = 0, 5, I0, 15, 20, 25 and 30 °.

The first step is to find a relation between the displacement of the

stages and the force applied to the top plate. This is done by applying

known forces along the deflections of each stage and noting the strain gage

readings. If the direction parallel to the nozzle is designated by x and

the perpendicular direction by y, relations of the form

Px = S1bex

(17)

Py = S2bey

may be written. P and P are the forces, and be and be are the differ-
x y x y

ences in strain gage readings between no load and full load, for the x- and

y-directions, respectively. Sl and S2 are the proportionality constants.

The next step is to correlate the force, P, with the air pressure, p.

From the free-body diagram of the attachment mounted on the calibrating sys-

tem (Fig. 7), the following relations are obtained:
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Px(p) = P(p) cos _(p)_02

P (p) _ P(p) sin _(p)q02,Y

(18)

where the force P has been split into its components P and P, which are
x y

functions of the pressure, p. The parameter _ is assumed to be a function

of p also. From Eqs. (18) we can write

Py

arctan [ _- (p)] = _(p)q02
X

419)

For a given attachment and angle _2' strain gage readings are taken for

a set of pressures. These in turn yield the forces P and P corresponding
x y

to each pressure. The angle of incidence, _2' is then varied from 0° to 30 °

in 5o increments and for each value of _2 an average value for P /P is ob-y x

tained over a range of pressures p. It turns out experimentally that P and
x

P are linear functions of p, as one would expect, and thus the ratio P /P
y y x

is independent of p. This means that _ must be independent of p because of

Eq. (19). If arctan Py/Px is plotted vs. _2' the result is (very nearly) a

straight line and, therefore, the slope may be interpreted as _ in Eq. (19).

is a constant for a given attachment.

The critical force is read, or interpolated, as the value of P at
x

_2 = 0 corresponding to the critical value of pressure. For small _2'

P _ P ; this is within the scope of the linearized theory.
x

In this manner, the value of _ is obtained experimentally for each

attachment.

B. Determination of Stiffnesses.

(a) D_namic Method. The spring constants KI, K2 and K 3 may be

determined experimentally by a simple dynamic analysis of various motions
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of the system.

The spring constant _ associated with the end joint and the linear

spring attached to bar I may be evaluated by locking the middle joint so

that the two bars moveas a rigid unit (Fig. 8). The linearized equation of

motion then is:

E 2 2KI£01+ mla21+ m2b2 + m3cI + m4(%I + a2)2 + m5(41 + b2)2 + m6(41 + c2)2

+ m7(41 + 42)2 + I I + 12 + 13 + 14 + 15 + 16 + 17_i= 0,

from which

2 /r 2 2 2

C°l = KI /Lmtal + m2b2 + m3cl + m4(_l + a2)2 + m5(41

(2o)

+ m7(41 + 42 )2 + I I + 12 + 13 + 14 + 15 + 16 + 17]

or

+ m7(41 + 42 )2 + I 1 + 12 + 13 + 14 + 15 + 16 + 17_ , (21)

where Col denotes the measured natural frequency of the system.

In a similar manner, the spring constant K 2 of the middle joint may be

determined by locking the end joint, removing the linear spring attached to

bar II and allowing the system to oscillate freely (Fig. 9). Then K2 is

given by

2_2 2 2 2 _ (22)K2 _ Co2 4a2 + m5b2 + m6c2 + m742 + 14 + 15 + 16 + 17 '

where Co2 is the measured natural frequency.

Spring constant K 3 can be found if K2 is known.

is attached to bar II, the equation of motion becomes

When the linear spring

2 2 2 2
KI = ColEmlal + m2b 2 + m3c I + m4(41 + a2 )2 + m5(41 + b2 )2 + m6(41 + c2 )2

+ b2 )2 + m6(41 + c2 )2



[ 2 2 2 2K2_°2 + m4a2+m5b2+m6c2+m7L2+ 14+ 15+I6+17 2 + Ksd2_°2 = 0,

15

whence

(23)

but q01 = d/%3, and thus

(b) Static Method. An alternate procedure for determining the

spring constants is to use a static method whereby forces are applied and

the resulting deflections measured.

To evaluate KI, the middle joint is locked so that bars I and II move

as a unit. The linear spring on bar II is detached. At a known point along

the bar a force is applied and the lateral deflection of that point is

measured (Fig. I0). From equilibrium

_I = _3 F' (25)

KI = _F/d, (26)

where F is the applied force, %3 is the distance from the center of the end

joint to the line of action of the force, and d is the deflection. Equa-

tions (25) and (26) are valid for small deflections only.

In a similar manner, K2 may be determined by fixing bar I in its equi-

librium position, applying a force, and measuring the resulting deflection

(Fig. Ii). The linear spring on bar II should remain detached. The result

is identical to Eq. (26) except that _3 is interpreted as the distance from

the center of the middle joint to the point of application of the force.

The remaining spring constant, K3, may be determined by using the same

where _3 is the measured natural frequency.

2 2 2 2 N 2

m4a 2 + m5b 2 + m6c 2 + m7_ 2 + 14 + 15 + 16 + 17jw3 - K2

K3 = 2 , (24)

d 2
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set-up as above but leaving the linear spring attached to bar II. Then,

from equilibrium

2

K3 = _ K2_ d2 ,

where _3' d and F are interpreted as in the determination of K 2 above, and

d2 is the distance from the line of action of the linear spring to the cen-

ter of the middle joint.

Theoretically, these two methods should yield identical results. Ex-

perimentally, the results of the two methods differed slightly (see Table

I). The static measurement is to be preferred because the dynamic method

depends upon the square of experimentally measured frequencies which are not

known with great accuracy.

C. Summary and Results.

The basic steps in the experimental procedure are as follows: First,

choose an attachment and mount it on the model. Raise the air pressure

slowly from zero and note the critical pressure at which the system starts

exhibiting amplified oscillations (flutter) or shows a static loss of sta-

bility (buckling). The supporting equipment is then used to find _ and to

find the force P corresponding to the critical pressure p. The spring con-

stants are then determined experimentally for use in the theoretical analy-

sis (Section 3).

When choosing attachments, it is desirable that they all be of about

the same weight and that a wide range of _ be covered more or less uniform-

ly. A wide variety of screens and sandpapers were weighed and combinations

were chosen that met these requirements. The values of _ which were ex-

perimentally realized lie in the range 0.238 to 0.913, the latter being for
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an attachment consisting of a smooth flat plate.

In Figs. 12 and 13, the experimental results are showntogether with

the theoretical curves. As was mentioned in Section 3, two systems had to

be considered because of a mechanical failure of the joints. For each ex-

perimental run a point of instability is drawn on the diagram at the corres-

ponding _ and P. A _ is used for a flutter point, while _ is used to

denote divergence. The measurementsare labeled I through 8 for System I

and I through 12 for System II.

Table 2 summarizes the experimental and theoretical results and pro-

vides a comparison between these results.
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5. DISCUSSION OF RESULTS, CONCLUSIONS AND RECOMMENDATIONS

The results of this study are summarized in Figs. 12 and 13 and in

Table 2. It is noted that the _xperlmentally determined critical points lie

somewhat below the theoretical stability curves for undamped flutter and

divergence. In the discussion which follows, the possible reasons for this

discrepancy are explored.

One of the primary reasons for the discrepancy between the theoretical

stability curve for undamped flutter and the experimentally observed points

of flutter appears to lie in the fact that damping is present in the phy-

sical system. The damping mechanism assumed in the analysis has already

been discussed. Stability curves for flutter with small damping taken into

account are shown in Figs. 12 and 13 for several values of the damping

ratio e. It is seen from these figures that in the presence of damping the

theoretical stability curves come to pass very near the experimental points.

It is shown in Appendix A that the assumed values of e are realistic. No

attempt is made here to determine _ with a high degree of accuracy since

the assumed damping mechanism, while reasonable, is chosen mostly for its

simplicity and it is doubtful that it represents completely the actual

damping in the system.

The results presented indicate that damping has a destabilizing effect

on the system and that the presence o_ damping extends the flutter region

to higher values of G. Also, the lower values of the damping ratio are as-

sociated with lower values of flutter loads and a wider flutter range.

This confirms results shown previously in [I0].

The theoretical curves bounding the regions of flutter (with and
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without damping) and divergence were found to be rather insensitive to small

changes in system parameters, as indicated in Table I, with the possible ex-

ception of the spring constants. The dynamic measurement of the spring con-

stants provides another possible source for the discrepancy since the calcu-

lation depends on the square of a measured quantity, i.e., the frequency of

free oscillations. But, the spring constants were determined also using

the static method previously described. Difficulties may arise here, how-

ever, in measuring the applied force by means of hanging weights on a light

string which passes over an air bearing.

Since the two methods of measuring the spring constants gave somewhat

different results (Table i), it was decided to investigate the effect of a

5% difference in either KI, K 2 or K3. A computer program was written in

which each calculated spring constant was subjected to a ± 5% uncertainty.

If an envelope is drawn about the nine curves thus obtained, the effect is

roughly to give a maximum error of i 6 gm (or • 4 - 10%). No other system

parameter (Table i) is subject to an error approaching 5%, except possibly

the moments of inertia, but these are insignificant when compared to the

mass-times-distance-squared terms to which they are added.

The observed discrepancy between the theoretical curve for divergence

and the experimental points may be due also, in part, to the uncertainty in

the values of the spring constants, but the major cause of error seems to

lie in the possibility of initial imperfections and nonlinear effects.

Since the physical model is not an ideal linear system free of imper-

fections, there is no single, sharply defined divergence load. An arbit-

rary criterion of the load required for a one-inch deflection of the middle

joint was used as the condition for divergence. By this definition, the
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experimental points of divergence were somewhatbelow (15-25%) the diver-

gence curves obtained from the linear analysis (Figs. 12, 13 and Table 2).

In an attempt to explain this discrepancy it seemsadvisable to investigate

the nonlinear divergence theory as well as the effects of initial imperfec-

tions. This is discussed in detail in Appendix B for _ = 0.717 (run Ii).

The results of this investigation are shown in Fig. 14, with a de-

tailed description of the curves given in Appendix B. It is noted that the

postulated criterion for divergence gives very nearly the sameload for

both the linear (curve A) and the nonlinear (curve B) cases, and thus the

theoretical divergence curves given in Figs. 12 and 13 actually represent

the divergence loads for the nonlinear theory in conjunction with the

adopted criterion.

The strong effect of imperfections on the divergence load is discussed

in Appendix B. Initial imperfections in the amount _I0 = 0.01, _20 = -0.01,

as shownin curve D, are indeed reasonable for this model. This corresponds

to a no-load deflection of about 0.i inch at the middle joint. This small

imperfection lowers the theoretical divergence load by about 15%.

Curve F is the experimental force-deflection curve for run II. Note

that the shape of the curve differs somewhatfrom the theoretical curves

shown. It should be pointed out that the points used to draw this curve are

rather difficult to obtain since holding the air pressure constant to obtain

a deflection reading does not prevent the motion of the model. Since the

run of the curve F is somewhatdifferent from the other curves, the likeli-

hood exists that other sources for the discrepancy may be present. It may

be appropriate to mention here that it has been noted repeatedly in the past

that structural systems buckle at loads below those theoretically expected.
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To provide better insight into the discrepancy under discussion, the

experimental procedure was also scrutinized. The method of correlating the

air pressure as read on the dial gage, to the actual force on the attach-

ment, was studied with the conclusion that no appreciable error could be

introduced.

As is pointed out in [I], more experimental work is needed in the area

of systems subjected to nonconservative forces. The present study is thus

expected to be merely a first contribution to quantitative experimentation

in this special field of stability of mechanical systems.
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APPENDIXA

Approximation to the Damping Ratio

If the end joint is locked and the linear spring attached to bar II is

removed, the equation of motion of bar II under the action of a force P from

the nozzle becomes

m4a 2 + m5b 2 + m6c 2 + m7_ 2 + 14 + 15 + 16 + 17 _

This may be solved for _2 by elementary means to yield, for small damping

_2 ce-At _B2 A2= cos - t, (A.2)

where

2, 1)/o
B 2 = (K 2 +P_2)/D

C = a constant

D = m4a_ + m5b22 + m6c22 + m7_22 + 14 + 15 + 16 + 1 7,

The ratio of any two amplitudes is given by

-An_

an/ = eR = a 1

or

(A.3)

(A4)

where a
n

period. This provides one relation in the unknown quantities ¢I and ¢2"

The damping on the attachment is assumed to be due to the drag on the

attachment as it moves through the ambient air. This drag can be eliminated

A = - log a/nT, (A.5)

is the nth amplitude, aI is the initial amplitude and T is the
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if the attachment is removed, but this would alter D in Eqs. (A.3). If the

attachment is replaced with an object of the same mass and moment of in-

ertia, but with significantly less surface area, thus creating much less

drag, an equation involving _I only would be obtained. Fortunately, 17 <<

m7_2 2' so the latter requirement is unnecessary. The attachment was thus

replaced with a piece of lead of mass m 7. Then

A* = e11v, (A.6)

where the asterisk denotes the fact that the dummy mass m 7 is used.

Equation (A.6) and the first of Eqs. (A.3) then give two equations in

the two unknowns el and e 2. The procedure then is to measure the frequency

of free oscillations, the initial amplitude and the amplitude after n

cycles, for bar II with the attachment in place, and repeat the procedure

with the dummy mass.

The damping ratio ¢ is given by

¢I A*D A*
e .... (A.7)

2 AD - ¢1 A - A*
¢2_2

A* and A are found from Eq. (A.5), with R, n and • being obtained ex-

perimentally.

Using experimental measurements,

= _ = nT* - - z _ . -A - n_ n_ / 0 0999 0.1055

where the asterisk again refers to measurements taken with the dummy mass in

place.

Of course, this result is approximate since there is some damping on

the replacement mass and also because ¢ is very sensitive to small changes
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in the R's, which are, in turn, based on measured amplitudes which are sub-

ject to considerable error. However, this result does support the choice of

= 5.0 as being of the correct order of magnitude.
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APPENDIXB

Nonlinear Divergence Analysis

The equations of motion, assuming _I

inertial effects, thereby restricting the equations to use for divergence

analysis, and allowing for imperfections by assuming that the equilibrium

configuration is not a straight line, are:

K#l - K2_ 2 - _i ) - PLlCOS _2sin_ I + K3Ll(Llsin_l + d2sin_m)COS_l

+ P%isin _2cos_l = 0

K2(_2 - _i ) + P sin _2[_2cos_2 + tan%02(_isin_l + _2sin_2 )]

+ PLlCOS c_02sin%01 + K3d2(Llsin_l + d2sin_2)cos_2 = 0,

where _i = _I - _I0' _2 = _2 - _20'

of _I and _2' respectively.

Restricting the magnitude of _I

and _i0 and _20

and _2 by setting

3

sin_l = _i - _i/6

cos O_02 = I - (_2)2/2 ,

and _2 are not small, neglecting

are the no-load values

(B.I)

the equations may be written as polynomials of the form

3 3 2 2 2 2

AI_ I + A2_ 2 + A3_I_ 2 + A4_I_ 2 + A5_ I + A6_ 2 + A7_I_ 2

+ AS_ I + A9_ 2 + AI0 = 0

3 3 2 2 2 2

BI_ I + B2_ 2 + B3_I_ 2 + B4_I_ 2 + B5_ I + B6_ 2 + B7_I_ 2

+ B8_ I + B9_ 2 + BI0 = 0.

A computer program was written to solve these two third-degree alge-

braic equations simultaneously for various values of P, _I0 and _20" The

(B.2)

(B.3)
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results are given in Fig. 14 for _ - 0.717 (run Ii) in the form P vs. _I"

The variation of _2 with P is essentially similar. The vertical dotted line

represents the angle _i corresponding to one-inch deflection of the middle

joint, which is the buckling criterion used in this study.

Curve A represents the linear case for _I0 = _20 = 0. No deflection

occurs until the buckling load is reached. Curve B represents the imperfec-

tion-free nonlinear case where the approximations (B.2) are used. The buck-

ling loads predicted by curves A and B are rather close.

Curves C, D and E are drawn for the values of _I0 and _20 indicated.

Note that the buckling loads, as determined by the intersection of the res-

ponse curves with the dotted vertical line, depend significantly on the

magnitudes of _I0 and _20"

Curve F is the experimental response curve for the model with the at-

tachment used for run ii (_ = 0.717) in place.
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Fig. I. Reut's problem
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Fig. 2. Photograph of the model
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A F

B G

C ' I{

D I

E J

Fig. 3. Sequence of photographs depicting flutter
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Fig. 4. Buckled state: divergence
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Fig. 5. Schematic of the model
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Fig. 6. Photograph of the calibrating system
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Fig. 7. Attachment mounted on calibrating

system (top view)
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Fig. 8. Configuration to find K 1 by
dynamic method

Lineor Spring

S Detached to find K 2

K3d2

K2_2

End Joint Locked

I

i

Fig. 9. Configuration to find K 2 and K 3 by

dynamic method
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I
d

I
I
I
I
I

F

Middle Joint Locked

Fig. i0. Configuration to find K 1 by
static method

I

End Joint

K3d2_)2

Locked

Fig. II. Configuration to find K 2 and K 3 by
static method
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IO0
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Linear Case (A) _i0 = 0.0, _20 = 0.0

Nonlinear Cases (B)

(c)

(D)

_I0 = 0.0,

_i0 _ 0.001,

_i0 0.01,

(E) _I0 = 0.05,

qo20 = 0.0

cp20 = -0.001

qo20 = -0.01

qo20 = -0.05

Experimental Case (F) _I0 and _20 unknown
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O I
I

i-_
Buckling

Fig. 14. Force versus deflection .for nonlinear divergence theory

with initial imperfections



Dimensions
(cm)

aI = O.692

bI = 16.3

cI = 31.9

a2 = 0.692

b2 = 16.3

c2 = 32.3

d2 = 25.3

41 = 32.4

= 32.62

Spring Constants

System I

System II

K2

K3

El

K2

K3

TABLE I

SYSTEM DATA

Part

I

2

3

4

5

6

7

Dynamic Method

5.70 X 106 gm.cm

9.12 X 106 gm-cm

3.50 × 102 gm/cm

5.34 X 106 gm.cm

9.02 X 106 gm.cm

3.35 X 102 gm/cm

Mass

(_)

10.20

22.0

42.1

10.20

22.0

3.2

43.5

Centroidal

Moment of

Inertia

2
(gm. cm )

0

1655

0

N 0

1655

N 0

771

Static Method

5.45 × 106 gm.cm

9.41X 106 gm.cm

3.53 X 102 gm/cm

41
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TABLE2

SUMMARYOFNUMERICALRESULTS

SYSTEMI SYSTEMII

Experi- Theoretical % Experi- Theoretical
mental error mental

Run * 1 2 3 * Pcrit 1 2 3
# _ Pcrit

(gm) (gin)(gin)(gin) (gm) (gm) (gin)(gm)

i 0.343 F 56.4 72 55 --- + 2.5 F 70.2 89 62

2 0.327 F 55.2 70 55 --- + 0.3 F 69.7 88 62

3 0.560 B 94.9 .... 124 -23.4 B 118.3 ....

4 0.368 F 57.2 73 55 --- + 3.8 F 75.7 90 63

5 0.548 B 99.9 .... 125 -20.i B 116.0 ....

6 0.913 B 95.9 .... 117 -18.0 B 111.9 ....

7 0.533 B 97.9 ..... 125 -21.7 B 110.2 ....

8 0.346 F 58.8 77 55 --- + 6.9 F 69.8 89 62

9 0.454 F 77.0 -- 66

i0 0.320 F 70.2 87 62

ii 0.717 B 105.0 ....

12 0.238 F 69.7 83 62

%

error

--- +12.9

--- +ii.I

140 -15.1

--- +19.2

140 -17.0

130 -13.8

140 -21.3

--- +11.4

--- +16.7

--- +12.9

135 -14.8

--- +12.4

l

Observed loss of stability: F = flutter, B = buckling.

I Undamped flutter.

2 Damped flutter, ¢ = 5.0.

3 Buckling.


